Problem of the Month:

February 2015

Coupled and decoupled 13C NMR spectra, recorded at 100 MHz

List of 13C chemical shifts: 161.6, 143.5, 127.2, 115.0, 50.5, 27.8
Strategy

(1) First, determine the number of DBE for the molecule. Its molecular formula is $C_8H_{10}FN$.

(2) Various types of 13C NMR spectra are presented on the first page: Without 1H or 19F coupling (top trace), with only 19F coupling visible (middle) and with both, 1H and 19F coupling present (bottom). With this information, you can assign the number of attached hydrogen or fluorine atoms.

(3) Now, assign protons to corresponding carbons from the 1H NMR spectrum on the next page. Try to assign the multiplets and derive the observable spin systems. Note, the upper spectrum is 19F decoupled.
Problem of the Month:

February 2015

\(^1\text{H}\{^{19}\text{F}\}\) NMR spectrum

\(^1\text{H}\) NMR spectrum, 400 MHz

© NMR, University of Cologne, 2015
Hints

(1) The 1H signal at δ_1 1.38 will cease, once a drop of deuterated water is added to the sample!

(2) This information, together with the number of DBE, should be helpful.

(3) This month’s problem does not contain any through-bond correlation experiments. The only 2D experiment available as additional information is a heteronuclear Overhauser effect (next page). This type of spectrum gives information about nuclei which are (farely) close in space (maximum 4 Å as a rule of thumb).

(4) Also, you might verify the other part of the aromatic spin system with the 19F NMR spectrum given on the next page.
Problem of the Month:
February 2015

H,F HOESY, 400/376 MHz

19F NMR spectra, 376 MHz

19F NMR spectrum

(ppm)

8.6 & 5.5 Hz

© NMR, University of Cologne, 2015
Problem of the Month:
February 2015

Solution

(1) The target molecule should be, according to DBE and 1H/13C chemical shifts in the sp2 region of the spectra, an aromatic compound. From the sum formula and the hint with the perishing signal at δ_H 1.38 (intensity = 2H), an amine is feasible.

(2) There is an AA‘XX‘ system visible in the 1H NMR spectrum, if 19F is decoupled. In combination with the 19F coupling observed in the 13C{1H} spectrum, the substitution pattern can be identified. This is affirmed by the NOE spectrum.

(3) To derive the aliphatic amine part, the 1H NMR spectrum is sufficient: Here, a AX$_3$ spin system is observed.

(4) No solution? Enter the chemical shifts of the 13C signals in nmrsshiftdb2 as a „spectrum search“ (option „complete“) or click here.