Problem of the Month:

\[^1H/^{13}C \text{ HSQC (600/151 MHz, } CDCl_3) \]

January 2016

© 2016 University of Mainz, Institute of Organic Chemistry, NMR facility
Problem of the Month:
January 2016

Strategy

(1) Given the molecular formula $C_9H_{14}O_7$, you can determine the number of double bond equivalents.

(2) Determine the CH_x fragments in the molecule from the edited HSQC spectrum. CH and CH_3 groups give positive crosspeaks (red), CH_2 groups give negative crosspeaks (blue). Quaternary carbons, as well as OH protons, will not yield any crosspeaks.

(3) Besides the correlation information, the inspection of the 1D 1H NMR spectrum (projection on top, intensities and chemical shifts given in spectrum on the next page) provides only few couplings. Investigate the 1H chemical shifts at 3.84 & 3.69 through a subspectrum search to get an idea of the type of possible functionalities.
Problem of the Month:

January 2016

© 2016 University of Mainz, Institute of Organic Chemistry, NMR facility
Hints

(1) Do a subspectrum search for the three chemical shifts that appear at the highest frequencies (173.8, 170.2) in the 13C NMR spectrum displayed on the following page. Check which are the most common fragments. Include the multiplicity (S) in your search. Repeat and then combine the search for the signals at 53.3, 52.1 (Q).

(2) Determine the connectivity of the fragments using the HMBC experiment (on page after next page). It shows coupling between 1H and 13C over more than one bond.

(3) You need to analyze the stereochemistry carefully to see why there is coupling between the protons 2.91 and 2.81.
Problem of the Month:
January 2016
Problem of the Month:
January 2016
Solution

(1) The target molecule contains, according to DBE (3) and carbon chemical shifts, three carbonyl double bonds, each of an ester moiety. There must be symmetry in the molecule, as is also reflected in the number of 13C signals and the relative intensities of e.g. signals C1 vs. C2, and C4 vs. C5, rsp.

(2) In the 1H NMR spectrum, symmetry is also detectable: The signals C ($\delta_\text{H} 3.69$) and A/B ($\delta_\text{H} 2.81/2.91$) correspond to double sets of CH$_3$ and CH$_2$ groups. Only one multiplet (an AB system for signals A/B) with a geminal coupling (2J$_\text{HH} = 15.7$ Hz) is present, since methylene protons are diastereotopic. Also, there is one OH group, signal E (identified with the aid of HSQC).

(3) Try to summarize the fragments, before entering your structure in the editor using the prediction menu of nmrshiftdb2. No solution? Enter the chemical shifts of the 13C signals in nmrshiftdb2 as a „spectrum search“ (option „complete“).