Problem of the Month:
December 2019

\(^1\text{H}\{^{19}\text{F}\} \text{ HOESY NMR}
(600 MHz, 700 ms)

\(^1\text{H}\) chemical shifts: 6.76 (dd), 6.53 (dd), 4.77 (s), 4.53 (q)

\(^{19}\text{F}\) chemical shift: -72.7
Problem of the Month: December 2019

Strategy

(1) HOESY (Heteronuclear Overhauser Effect Spectroscopy) experiments allow detection of spatial proximity between NMR-active nuclei of different isotopes. The title spectrum shows interactions between 1H and 19F atoms that are no further apart than ca. 5 Å.

(2) On the next page, an ‘edited‘ HSQC is given. I.e. CH and CH$_{3}$ groups show positive cross peaks, CH$_{2}$ groups produce negative cross peaks. Quaternary carbons, as well as exchangeable protons, generate no cross peaks. 1H integrals are indicated by blue numbers underneath the projection.

(3) Also, you might calculate the degree of unsaturation (DBE) from the molecular formula: C$_{8}$H$_{8}$F$_{3}$NO.
Problem of the Month:

December 2019

H,C HSQC @ 600/150 MHz
Problem of the Month:
December 2019

H,C HMBC @ 600/150 MHz
Hints

(1) Connectivity between fragments is derived from the H,C HMBC experiment (rule of thumb: for sp² carbons, $^{3}J_{CH}$ cross peaks are more intense than $^{2}J_{CH}$ cross peaks).

(2) There are two types of spin systems in this molecule, each coupling over three bonds - they can be identified from carefully analysing the 1D 1H spectrum on depicted on top of the HSQC experiment, and from H,H COSY and H,F COSY spectra (see next page).
Problem of the Month:
December 2019

H,H COSY

H,F COSY
Problem of the Month: December 2019

Solution

(1) The molecule of December contains a homonuclear, aromatic AA′XX′ spin system and a heteronuclear, aliphatic A₂X₃. The exchangeable amine proton has a long range coupling on the corresponding, quaternary carbon. Assignment of the aromatic part is possible through HMBC correlations, note the F,C splitting of the CF₃ group.

(2) On nmr.cheminfo.org, there is a tool to simulate ¹H NMR spin systems: In the forth row, compare with simulate spin system’an AB (A₂X₂ case) vs. an ABCD system (AA′XX′ case) for the aromatic part [so far, heteronuclei and exchangeable hydrogens cannot be considered].

(3) If you are still in doubt - the correct structure will be uploaded in nmrshiftdb as a new entry in January 2020.