Problem of the Month: December 2020

Deduce the constitution, assign all nuclei (stereochemically correct as far as possible) and work out all proton-proton coupling constants

Finding the constitution using HSQC, COSY and the one dimensional spectra shouldn't be that challenging ... but the couplings are really tricky ...

December 2020

Step by step:

To get the constitution, initially you don't need to analyze the structure of the proton multiplets.

Use the ¹³C projection to get all ¹³C NMR signals. There are no quaternary carbon atoms as you see if you compare this HSQC with the molecular formula.

Problem of the Month: December 2020

Strategy

- (1) Initially, you might calculate the degree of unsaturation (DBE) from the given molecular formula.
- (2) Find out which spin systems are available in the molecule. Use H,C HSQC and H,H COSY spectra for that purpose.
- (3) How are the fragments connected? A detailed analysis of the multiplets (including size of couplings) can be very helpful. There is a nice tool to simulate spin systems at <u>nmr.cheminfo.org</u>
- (4) In case that you are stuck (no HMBC) you can use <u>nmrshiftdb's prediction</u> to check your structure proposals.